In [1]:
from IPython.display import IFrame, display, HTML
import pandas as pd
import numpy as np
from bokeh.models import ColumnDataSource, Plot, Circle, Range1d, LinearAxis, TapTool, HoverTool, Text
from bokeh.embed import file_html
from bokeh.plotting import vplot
from bokeh.resources import INLINE
from bokeh.models.actions import Callback
from bokeh.models.widgets import Slider
In [2]:
# Links via http://www.gapminder.org/data/
"""
population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls"
fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls"
life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls"
def get_data(url):
# Get the data from the url and return only 1962 - 2013
df = pd.read_excel(url, index_col=0)
df = df.unstack().unstack()
df = df[(df.index >= 1962) & (df.index <= 2013)]
df = df.unstack().unstack()
return df
fertility_df = get_data(fertility_url)
life_expectancy_df = get_data(life_expectancy_url)
population_df = get_data(population_url)
fertility_df.to_hdf('fertility_df.hdf', 'df')
life_expectancy_df.to_hdf('life_expectancy_df.hdf', 'df')
population_df.to_hdf('population_df.hdf', 'df')
"""
fertility_df = pd.read_hdf('fertility_df.hdf', 'df')
life_expectancy_df = pd.read_hdf('life_expectancy_df.hdf', 'df')
population_df = pd.read_hdf('population_df.hdf', 'df')
In [3]:
# have common countries across all data
fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index))
population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index))
# get a size value based on population, but don't let it get too small
population_df_size = np.sqrt(population_df/np.pi)/200
min_size = 3
population_df_size = population_df_size.where(population_df_size >= min_size).fillna(min_size)
In [4]:
sources = {}
years = list(fertility_df.columns)
for year in years:
fertility = fertility_df[year]
fertility.name = 'fertility'
life = life_expectancy_df[year]
life.name = 'life'
population = population_df_size[year]
population.name = 'population'
new_df = pd.concat([fertility, life, population], axis=1)
sources['_' + str(year)] = ColumnDataSource(new_df)
xdr = Range1d(1, 8)
ydr = Range1d(20, 85)
plot = Plot(
x_range=xdr,
y_range=ydr,
title="",
plot_width=800,
plot_height=400,
outline_line_color=None,
toolbar_location=None,
)
xaxis = LinearAxis()
yaxis = LinearAxis()
plot.add_layout(xaxis, 'left')
plot.add_layout(yaxis, 'below')
tooltips = "@index"
plot.add_tools(HoverTool(tooltips=tooltips))
renderer_source = sources['_1962']
highlighted = Circle(x='fertility', y='life', fill_color='#F6931F', line_color='#995a13', size='population')
plot.add_glyph(renderer_source, highlighted)
# Dictionary_of_sources is:
# {
# 1962: '_1962',
# 1963: '_1963',
# ....
# }
# We turn this into a string and replace '_1962' with _1962. So the end result is js_source_array:
# '{1962: _1962, 1963: _1963, ....}'
#
# When this is passed into the callback and then accessed at runtime,
# the _1962, _1963 are replaced with the actual source objects that are passed in as args.
dictionary_of_sources = dict(zip([x for x in years], ['_%s' % x for x in years]))
js_source_array = str(dictionary_of_sources).replace("'", "")
code = """
var key = slider.get('value'),
sources = %s,
new_source_data = sources[key].get('data');
renderer_source.set('data', new_source_data);
renderer_source.trigger('change');
""" % js_source_array
callback = Callback(args=sources, code=code)
slider = Slider(start=1962, end=2013, value=1, step=1, title="Year", callback=callback)
callback.args["slider"] = slider
callback.args["renderer_source"] = renderer_source
layout = vplot(plot, slider)
html = file_html(layout, INLINE, "gapminder")
In [5]:
display(HTML(html))